Распечатай себе дом: изучаем возможности применения 3d-принтера в строительстве

Композиционное макетирование

Основными элементами, которые воспроизводятся при выстраивании композиции, следует считать объемно-пространственную структуру объекта, его тектонику и планировку, пропорции основных частей и доминанты, а также ритмический и пластический слои.

Организация правильно выстроенной композиции — одна из главных дизайнерских задач при разработке макета

При этом обращать внимание нужно не только на основные составляющие элементы. В частности, композиционной основой макетирования можно назвать не только сам макет, но и подмакетник, ведь его размер будет определять силу воздействия композиции на пространство точно так же, как и реальный объект архитектуры делает это в жизни

Среди других основ композиции выделяют следующие:

  • соблюдение пропорций всех элементов и частей;
  • создание гармонических пластических переходов между поверхностями;
  • определение точных пространственно-размерных характеристик;
  • выявление правильного образно-пластического характера, текстуры и цветографики.

Этап 5: Печать 3D-объекта

Важнейшими элементами 3D-принтера являются рабочая платформа и печатающая головка. На рабочей платформе происходит формирование готового объекта. Во время работы платформа двигается вверх и вниз по оси Z. Печатающая головка выдавливает на рабочую платформу расплавленную полимерную нить, слой за слоем формируя готовый объект. Печатающая головка 3D-принтера движется по горизонтали и вертикали (оси X, Y).

Конструктивные элементы FDA-принтера

Сам по себе процесс трёхмерной печати довольно прост. Печатающая головка выдавливает в рабочую зону первый слой расплавленного пластика, после чего платформа опускается вниз на толщину слоя и начинается формирование следующего слоя, который накладывается поверх предыдущего. После завершения печати каждого слоя платформа опускается вниз, так происходит на протяжении всего цикла печати, пока на платформе не появится готовый объект.

3D-печать: принтер наносит на платформу первые слои изделия

Печать объекта продолжается. На фото хорошо видны слои, которые наносит печатающая головка

3D-печать на завершающем этапе

Чтобы напечатать трёхмерную модель, принтеру требуется несколько часов, в зависимости от сложности изделия.

Безусловно, у разных моделей 3D-принтеров есть свои особенности функционирования, но базовые принципы остаются неизменными.

Медицина

Использование 3D принтеров в медицине позволяет спасти человеческие жизни. Такие принтеры могут воссоздать точную копию человеческого скелета для отработки приёмов, гарантирующих проведение успешной операции. Всё чаще 3D принтеры используют в протезировании и стоматологии, так как трёхмерная печать позволяет получить протезы и коронки значительно быстрее классической технологии производства.

Прототипы зубных коронок, напечатанные на 3D принтере

Медицинские трёхмерные модели могут быть изготовлены из целого ряда материалов, включая живые органические клетки. Выбор того или иного материала для медицинского прототипирования зависит от целей и задач, стоящих перед медиками, и проблем, связанных со здоровьем пациента.

Совсем недавно сила и мощь 3D печати была продемонстрирована на примере обыкновенного орла, который по вине браконьеров лишился клюва. 3D печать позволила изготовить точную копию орлиного клюва.  

Орлиный клюв, напечатанный 3D принтером

На рисунке ниже показана малышка Emma Lavalle (Эмма Лаваль), страдающая от редкого врождённого заболевания, при котором атрофируются мышцы рук, и ребёнок не может взять в руки даже лёгкую игрушку. Медики разработали и напечатали на 3D принтере специальный пластиковый экзоскелет, который помогает девочке жить полноценной жизнью.

Экзоскелет, напечатанный на 3D принтере для девочки с отрафированными мышцами рук

По мере роста девочки, специалисты печатают новые запасные части для экзоскелета, так что он всегда ей в пору.  

Не останавливаясь на достигнутом, медики  научились печатать «заплатки» для повреждённой человеческой кожи. В качестве материалов для печати используется специальный гель из клеток донора. По словам учёных, для печати кожи может быть использован даже самый обычный офисный принтер, немного модернизированный под поставленную задачу.

«Заплатка» для человеческой кожи, напечатанная 3D биопринтером

В 2011 году учёные сумели воспроизвести живую человеческую почку. Для этого 3D принтеру потребовалось всего лишь 3 часа.

3D принтер печатает живую почку

Для печати пластиковых медицинских прототипов, совместимых с биологическими организмами, используются 3D принтеры Eden 250, 260V, 350, 350V, 500; Fortus 400mc, 900mc; Objet 260 Connex, Connex 350 и 500.

Архитектура

3D печать находит широкое применение в изготовлении архитектурных макетов зданий, сооружений, целых микрорайонов, коттеджных посёлков со всей инфраструктурой: дорогами, деревьями, уличным освещением.

На рисунке показаны макеты зданий, созданные с использованием трёхмерной печати.

Применение 3D печати в архитектуре

Для печати трёхмерных архитектурных макетов используют дешёвый гипсовый композит, который обеспечивает низкую себестоимость готовых моделей.

На сегодняшний день для 3D печати доступно 390 тысяч оттенков палитры CMYK, что позволяет воплотить в жизнь любую цветовую фантазию архитектора.

Для трёхмерной печати архитектурных моделей и прототипов чаще всего используются цветные 3D ZPrinter модели 250, 450, 650, 850 и чёрно-белые 3D ZPrinter модели 150 и 350.

Дома, дворцы, кинотеатры

BIM-технологию уже успешно применяют в столичной строительной отрасли. Так, за последние несколько лет с помощью трехмерных моделей реконструировали здание и территорию вокруг Политехнического музея, перестроили кинотеатр «Таджикистан», построили Дворец гимнастики Ирины Винер-Усмановой и новый храм Сретенского монастыря.

Застройщики, работающие по программе реновации, активно используют BIM как для проектирования новых жилых комплексов, так и для моделирования сноса ветхих пятиэтажек и будущей перепланировки территории. Причем BIM-модели кварталов реновации включают в себя не только строительные и инженерные показатели, но и социальные: количество магазинов, школ и детских садов, необходимое на новой территории, количество и конфигурацию детских и спортивных площадок, беседок, зон отдыха и многое другое.

Проектировать такие сложные пространства с учетом всех особенностей и потребностей жителей помогает вариантная проработка. Для каждой стартовой площадки программы реновации создают несколько моделей планировки территории, чтобы выбрать вариант, который удовлетворит и застройщика, и город, и будущих жителей.

«Это похоже на игру в пятнашки. Ставятся 3D-модели домов. Рассчитываются технико-экономические показатели. Затем делается новый вариант. Вариантов может быть три, пять, десять, но результат должен быть только один: условия должны быть не хуже, а лучше, должны быть запроектированы дороги, стоянки, озеленение, которому сейчас уделяется очень много внимания. Если делать это на плоских чертежах, глаз замыливается и варианты кажутся очень похожими, а в 3D-модели можно изменить этажность домов, поменять конфигурацию, проверить инсоляцию. Поскольку модель динамическая, то сразу меняются технико-экономические показатели. По всем площадкам реновации, выполненным Институтом генплана Москвы, есть модели, которые отражают сегодняшнюю ситуацию, и есть проектные модели — уже без домов, которые снесут, то есть модели будущих районов», — рассказывает Валентина Чешева.

Институт генплана уже использует BIM для всех проектов. Успешно применили информационное моделирование при строительстве южных станций Сокольнической линии метрополитена: их наземные павильоны были спроектированы в трехмерном формате. Сейчас институт работает в BIM над строящимися дорогами — Северо-Восточной и Юго-Восточной хордами, дублерами Кутузовского проспекта, а также над Большой кольцевой и Бирюлевской линиями метро.

Строительство последней обещают организовать по новым принципам: над одной BIM-моделью впервые будет работать единая команда из сотрудников Мосгоргеотреста, Института генплана, проектировщиков, строителей и представителей самого метрополитена как эксплуатирующей организации. Таким образом, Бирюлевская линия метро станет первой, целиком созданной по технологии информационного моделирования.

Печать игрушек и сувениров

Использование 3D принтеров для создания уникальных игрушек и сувениров уже ни у кого не вызывает удивления. Теперь легко получить готовый полноцветный прототип перед запуском изделия в массовое производство. Анализ прототипа позволяет изучить текстуру будущего изделия, его форму, размер и цвет.

Чаще всего сувенирные изделия печатают из гипсовых материалов, дополнительно обработанных для увеличения прочности готового изделия. 3D принтеры печатают сувениры с различной цветностью, вплоть до полноцветной текстуры в 390000 оттенков.

Игрушки и сувениры, напечатанные 3D принтерами

Для изготовления цветных игрушек и сувениров больше всего подходят принтеры ZPrinter 250, 450, 650 и 850.

«Массандра» (Москва, Комсомольский проспект, 2003 год)

Следующим опытом применения методологии трехмерного моделирования стало создание магазина-дегустационного зала винодельческой компании «Массандра». Этот объект наша команда выполняла целиком — от проекта до реализации.

В концепции интерьера использовались крымские мотивы — светлые тона, белые стены и потолки, светлое торговое оборудование. Причем идея была такова: стойка была как бы носом корабля, от которого при движении разбегаются буруны. Именно такая форма торгового оборудования и была предложена в качестве основной.

Первым шагом в моделировании стало формирование трехмерной модели исходного пространства по результатам обмеров

Как правило, этому этапу уделяется очень серьезное внимание. Погрешность измерений должна быть минимальна, чтобы исходная обстановка была смоделирована с высоким уровнем точности

На рисунке видна схема обмеров, достаточно традиционная для нас, — прямые ходы, подкрепленные диагональными, что создает треугольную базу.

На основе этой схемы моделируется исходная обстановка: стены, двери, окна, перекрытия и другие элементы, позволяющие точно отразить реальное положение дел. Достоверность обмеров и исходной модели объекта — краеугольный камень любого моделирования. Прототип объекта должен быть воссоздан в виртуальной реальности максимально точно, поскольку от этого зависит точность выпускаемой рабочей документации.

После создания исходной (базовой) модели началось моделирование торгового оборудования, располагающегося вдоль стен. Сложность заключалась в том, что если исходную обстановку можно было смоделировать, применяя параметрическое моделирование (пользуясь категориями «стены», «окна», «двери» и т.д.), то торговое пристеночное оборудование — только вписывая его в параметрически созданный объем посредством объемного (концептуального) трехмерного моделирования. В горизонтальной плоскости на отметках пола и потолка контуры оборудования были созданы сплайновыми кривыми, затем преобразованными в объемные трехмерные массивы. На рисунках показаны контуры оборудования на уровне потолка в плане, а также аксонометрии исходного состояния торгового зала с вписанными массивами торгового оборудования.

C помощью булевых операций сложения и вычитания объемные массивы преобразовывались в трехмерную модель торгового оборудования: прорезались полки, ниши по заранее проработанным эскизам, учитывающим правила мерчандайзинга и прочих торговых хитростей.

Теперь можно было работать с объемными представлениями оборудования поблочно, используя их для разработки рабочей документации. Поскольку блоки оборудования были смоделированы не параметрически, а прямым трехмерным моделированием, получение необходимых разрезов тоже происходило с помощью булевых операций. Процесс работы с такими нестандартными объемами, образованными соединением сплайнов разной конфигурации, был достаточно сложным и продолжительным. Для получения точной деталировки приходилось делать множественные вертикальные и горизонтальные разрезы, которые исчислялись несколькими десятками на каждый элемент пристенного оборудования. Благодаря изначально соблюденным требованиям по чистоте замеров и точности объемной (массивной) трехмерной модели, отклонения в деталировке были незначительными.

Одновременно с подготовкой рабочей документации на изготовление блоков пристенного оборудования разрабатывались монтажные карты, основой для которых стали вертикальные и горизонтальные разрезы, а также аксонометрии торгового зала.

На одном из разрезов видна стойка, по форме напоминающая нос корабля, — исходная точка для формирования изгибов нестандартной формы для торгового оборудования.

Затем, после формирования рабочей документации, работа шла уже по неоднократно опробованным правилам: на производстве изготавливались и собирались в пакеты деталей блоки оборудования, которые доставляли на площадку, где монтажные бригады производили сборку, пользуясь пронумерованными деталями, в соответствии с монтажными планами, разрезами и аксонометриями. Практически аксонометрии являлись описанием того конечного продукта, который необходимо было предоставить заказчику на этапе завершения монтажа. И для такого представления трехмерное моделирование подходит как нельзя лучше.

Фотографии, на которых показано финальное состояние проекта, позволяют сравнить задуманное с реализованным, несмотря на то что аксонометрии представлены здесь в черно-белом варианте.

На иллюстрациях запечатлен момент перед открытием магазина, дня за два-три, когда полным ходом шло размещение крымских вин, в том числе коллекционных.

Быстро, дешево и точно

По мнению экспертов, в ближайшие годы все строители перейдут на BIM-технологию. Для ускорения этого процесса в Институте генплана создан центр компетенций по информационному моделированию градостроительных объектов. Его сотрудники не только работают с конкретными 3D-моделями, но и создают внутренние регламенты, собирают библиотеки элементов, а также обучают коллег работе с программным обеспечением и технологиями производства.

По мнению Олега Григорьева, сейчас без BIM невозможно добиться нужной точности проектировки, особенно в таком мегаполисе, как Москва.

Таким образом, BIM серьезно повышает качество и сокращает сроки проектирования и строительства, удешевляет его и позволяет избежать множества ошибок. В Градостроительный кодекс Российской Федерации уже начали вносить изменения: в нем появились термины «информационная модель», «формирование и ведение классификатора строительной информации», «цифровая архитектура», «управление жизненным циклом объекта». Осталось принять ряд подзаконных актов, и строительный комплекс Москвы станет полностью цифровым.

Реальные примеры

3D строительство домов — технология хоть и новая, но уже «обросла» массой конкретных примеров. Например, в Ярославле есть дом, в который заселилась обычная семья. И здание это было построено как раз с помощью 3D оборудования. Это первый дом в СНГ и Европе, возведенный таким способом. Строили его в 2015 году — принтер создал части коробки, которые были смонтированы всего за месяц на уже подготовленном фундаменте. И это — в декабре месяце. В 2017 году закончились работы по строительству кровли. Этот дом — не желание показать возможности 3D строительства, а самое настоящее жилое здание.

3D дом в Ярославле

Ранее в 2014 году в Китае были также представлены 10 домов, созданных на 3D принтере. Они расположены в промышленном парке провинции Цзянсу. Стоимость каждого строения — больше 3000  фунтов стерлингов. Это было начало технологии развития 3D строительства. Затем компания, построившая дома, усовершенствовала методику и создала более высокие здания.

3Dдом в Китае

В том же году в США сделали отпечаток замка. Его изготовили за 2 месяца. Замок невелик, но смотрится очень красиво. Размеры его основной части — 3Х5Х3,5 м. А башенки печатались отдельно.

Мини-замок в США, созданный на 3D принтере

В 2015 году в Филиппинах построили целые апартаменты при помощи новой технологии. Размеры — 10,5Х12,5Х3 м. Для создания этого строения использовали вулканический пепел и песок.

Дом из песка и вулканического пепла в Филиппинах

А во Франции в 2018 году создали целый пятикомнатный дом, площадь которого составляет 95 квадратов. Строил его манипулятор с экструдером для монтажной пены. Ее и использовали как основу. После нескольких слоев пены строители заливали созданную часть бетоном и так делали, пока не построили весь дом.

3D дом во Франции

Технология 3D строительства удобна и практична, все работы выполняются машинами и компьютерами. Пока неизвестно, к чему все это приведет, но сама по себе методика достаточно интересна. Возможно, в будущем благодаря ей мы будем строить здания намного быстрее.

Способ 1: Blender

Blender — первая программа, основное предназначение которой заключается в создании 3D-моделей для дальнейшего их анимирования или применения в разных сферах компьютерных технологий. Она распространяется бесплатно и подходит начинающим юзерам, кто впервые столкнулся с приложениями такого рода, поэтому и занимает эту позицию. Давайте вкратце рассмотрим процедуру подготовки модели для печати пошагово, начав с настройки самого инструмента.

Шаг 1: Подготовительные действия

Конечно, после запуска Blender можно сразу же приступать к ознакомлению с интерфейсом и разработке моделей, однако сначала лучше уделить внимание подготовительным действиям, чтобы настроить рабочую среду под макеты для 3D-принтеров. Эта операция не займет много времени и потребует активации всего нескольких параметров

  1. Для начала в стартовом окне выберите параметры внешнего вида и расположение элементов, отталкиваясь от личных потребностей.

В следующем разделе окна «Quick Setup» вы увидите разные шаблоны для начала работы и ссылки на источники со вспомогательной информацией, которая пригодится при освоении ПО. Закройте это окно, чтобы перейти к следующему этапу конфигурации.

На панели справа отыщите значок «Scene» и нажмите по нему. Название кнопки появляется через несколько секунд после наведения на нее курсора.

В появившейся категории разверните блок «Units».

Установите метрическую систему измерений и задайте масштаб «1». Это необходимо для того, чтобы параметры сцены перенеслись на пространство 3D-принтера в должном виде.

Теперь обратите внимание на верхнюю панель программы. Там наведите курсор на «Edit» и в появившемся всплывающем меню выберите «Preferences».

В окне настроек переместитесь на «Add-ons».

Отыщите и активируйте два пункта под названиями «Mesh: 3D-Print Toolbox» и «Mesh: LoopTools».

Убедитесь в том, что галочки были успешно проставлены, а затем покиньте данное окно.

Дополнительно рекомендуем обратить внимание и на другие пункты конфигурации. Здесь вы можете настроить внешний вид программы, поменять расположение элементов интерфейса, трансформировать их или вовсе отключить

По завершении всех этих действий переходите к следующему шагу.

Шаг 3: Проверка проекта на соблюдение общих рекомендаций

Перед завершением работы над моделью мы советуем не упускать самые важные аспекты, которые следует выполнять для оптимизации проекта и обеспечения его корректной распечатки на принтере. Для начала убедитесь, что ни одна из поверхностей не накладывается друг на друга. Они должны лишь соприкасаться, образуя единый объект. Если где-то произойдет выход за рамки, вероятны проблемы с качеством самой фигуры, поскольку в неправильно оформленном месте произойдет небольшой сбой печати. Для удобства вы всегда можете включить отображение прозрачной сети, чтобы проверить каждую линию и поле.

Далее займитесь уменьшением количества полигонов, ведь большое количество этих элементов лишь искусственно усложняет саму фигуру и мешает оптимизации. Конечно, избегать лишних полигонов рекомендуется еще при создании самого объекта, но не всегда получается сделать это на текущем этапе. Вам доступны любые способы данной оптимизации, о чем тоже написано в документации и рассказывается в обучающих материалах от независимых пользователей.

Теперь хотим отметить и тонкие линии или какие-либо переходы. Как известно, само сопло имеет определенный размер, что зависит и от модели принтера, а пластик не является самым надежным материалом. Из-за этого лучше избегать наличия совсем тонких элементов, которые в теории могут вообще не получиться на печати или будут крайне хрупкими. Если такие моменты присутствуют в проекте, слегка увеличьте их, добавьте опору или по возможности избавьтесь.

Шаг 4: Экспорт проекта

Завершающий этап подготовки модели для печати — экспорт ее в подходящем формате STL. Именно этот тип данных поддерживается 3D-принтерами и будет корректно распознан. Никакого рендеринга или дополнительных обработок можно не осуществлять, если для проекта уже были назначены цвета либо какие-либо простые текстуры.

  1. Откройте меню «File» и наведите курсор на «Export».

В появившемся всплывающем списке выберите «Stl (.stl)».

Укажите место на съемном или локальном носителе, установите название для модели и нажмите на «Export STL».

Проект сразу же будет сохранен и доступен для выполнения других действий. Теперь вы можете вставить флешку в принтер или подключить его к компьютеру, чтобы запустить выполнение имеющегося задания. Советов по его настройке мы давать не будем, поскольку они сугубо индивидуальны для каждой модели устройств и четко прописаны в инструкциях и различных документациях.

Китайский WinSun

Шанхайская фирма Shanghai WinSun и Decoration Design Engineering Co лидирует в списке. Ее принтер трехмерный WinSun составляет 150 метров в длину, в ширину -10, а высотой он 6 метров. Согласитесь, что сооружение солидное. Оно в состоянии шестиметровое здание напечатать за считанные часы, используя для этого смесь, состоящую из цемента, стали и стекла.

Видео:

Видео: 3Д принтер строительный

Свои первые десять зданий она напечатала три года назад- в 2014 году. Стоимость каждого не превышала 270 000 рублей. По стоимости такое строительство дешевле вдвое, экономия материала превышает 60%, трудозатраты сокращаются на 80%.

Самым высоким представленных разнотипных сооружений был пятиэтажный дом стоимостью 7 млн. руб. Понятно, что в заказах недостатка не было. В числе заказчиков был Египет.

Ведущие производители принтеров для 3D-печати домов

В России пока немногие компании решились освоить такую технологию строительства. Ещё меньше занимаются серийным производством такого оборудования. Всё-таки, пока это штучный товар. Однако, всё же можно назвать одну из них, которая уже прочно заняла лидирующие позиции в этой области. Это фирма СпецАвиа. Её персоналом был разработан и опробован прототип строительного 3D-печатного аппарата и осуществлена пробная печать.

Кроме того, на рынке можно встретить образцы словенской компании BetAbram. Она занялась серийным производством строительных принтеров. Сейчас в линейке компании несколько вариантов конструкций или моделей принтеров.  Их стоимость варьируется от 12 000 евро за станок до 20000 евро. Вероятно, что затраты себя оправдают.

Принтер BetAbram P1 может напечатать дом площадью в 144 квадратных метра, при относительно невысокой конструкции – около трех метров

Внешне принтер похож на обычную платформу, двигающуюся по рельсам. Они регулируются по высоте.

А как же насчет внутренних стен? Интересно, что и тут строительный 3D-принтер тоже может выручить. Просто сырье для возведения внутренних перегородок отличается.

Такие стены никак не похожи на цементные, хотя напечатаны в той же технологии

Специальный полимер на основе клея и соли, высыхая, создает ажурную конструкцию, которая про прочности не уступает цементной, однако, она значительно легче. Материал не боится влаги, его можно использовать для возведения перегородок.

Материал под названием Saltygloo (с англ. «солевой клей») был разработан компанией EmergingObjects

Ложка дёгтя: недостатки 3d печати, влияющие на бизнес

Хотя неподготовленным наблюдателем процесс 3d печати может восприниматься как чудо, он тем не менее принадлежит к реальному миру. Как у всякого явления этого мира, у него есть свои недостатки, которые стоит учесть при организации бизнеса. Итак:

  • кто бы что ни говорил, напечатать на «домашнем» 3d принтере можно далеко не всё (например, нельзя напечатать сложный механизм в сборе или очень мелкие детали в случае FDM принтера);
  • при 3d печати существуют ограничения по размеру изделия (обычно в пределах 30 см, максимум — до 50 см);
  • по прочности напечатанные изделия уступают литым из пластмассы;
  • полноцветная печать возможна только на промышленном оборудовании, но даже там нет плавного перехода между цветами;
  • поверхность напечатанных изделий часто требует дополнительной обработки (шлифовки, полировки и т. п.);
  • массовое производство при 3d печати недоступно, так как 3d принтеры (особенно «домашние») слишком медленны для него;
  • оборудование для 3d печати всё ещё остаётся довольно дорогим.

Поверхность напечатанных на 3d принтере деталей уступает в качестве литым изделиям и часто требует дополнительной обработки

Все эти нюансы понижают конкурентноспособность бизнеса. Однако у технологии 3d печати есть огромное преимущество, которое заключается в возможности изготавливать уникальные объекты быстро и недорого. Используйте это преимущество, создавая эксклюзивные украшения, сувениры, предметы интерьера, прототипы и опытные образцы — всё то, чего не выпускает массовое производство, и ваш бизнес будет успешным.

Взрослые — совершенно как дети — любят игрушки. Но, поскольку «взрослые» игрушки, как правило, стоят нешуточных денег, позволить их себе могут далеко не все. И время, когда 3d принтер будет в каждом доме, наступит ещё нескоро. А до этого момента счастливый обладатель такого замечательного устройства имеет шанс заработать на любимой игрушке.

Использование строительного 3D-принтера S-6044 для собственного бизнеса

Для печати дома целиком требуются дорогостоящие широкоформатные 3D принтеры, для контроля над работой которых требуются специальные навыки. Модель S-6044 – отличная альтернатива, позволяющая создавать отдельные части конструкций объемом до 12 куб. м., например, декоративных элементов, которые сложно создать вручную.

Принтер S-6044 целесообразно использовать для производства декоративной уличной мебели. Например, себестоимость изготовления лавочек с уникальным архитектурным дизайном составит около 1,5 тыс. рублей, при этом их розничная стоимость превышает 5 тыс. рублей. Производительность S-6044 позволяет изготавливать около 15 единиц уличной мебели в сутки (в зависимости от сложности конфигурации):

Для начала бизнеса потребуется:

  1. Покупка строительного 3D принтера. Стоимость модели S-6044 на данный момент составляет 960 тыс. рублей. Устройство может быть приобретено в лизинг.
  2. Помещение для установки и эксплуатации 3D принтера с наличием водопровода.
  3. Мешалка для приготовления строительной смеси.
  4. Расходные материалы (цемент, песок, вода, специальные добавки).
  5. Персонал (2 человека) для управления и обслуживания принтера.
  6. Работники, имеющие опыт в сфере архитектурного дизайна, умеющие работать с программами для 3D моделирования.
  7. Транспорт для доставки напечатанных элементов.

Оборудование, инвентарь

Компьютер – 25 тыс. руб., 3d принтер – 75 тыс. руб. При его покупке нужно учитывать возможность приобретения запчастей.

Бабины с пластиковой нитью 10 шт. – от 16 тыс. руб. Они бывают из нефтепродуктов (АБС-пластик) или из кукурузы и сахарного тростника (ПЛА-пластик). Лучше выбирать принтер, который использует оба вида.

Всего 116 тыс. руб.

Диаметр печатающего средства:

  • 250 мк – дешевый принтер, который быстро печатает;
  • 100 мк – подходит для домашнего использования;
  • 50 мк – очень качественная печать, не заметная для глаза человека.

Размеры изделий:

  • До 12 см3 – дешевый принтер;
  • До 30 см3 – принтер от 3 тыс. долл. Весом до 5 кг.

Отдельные маленькие детали можно склеить в одну большую.

Цвет печати зависит от количества головок. Чем их больше, тем разнообразнее расцветки детали. Но часто цвет изделия не влияет на ее качество. Поэтому не обязательно выбирать самые дорогие модели. Детали можно покрасить или производить из нитей разного цвета.

Дизайн упаковки

Трёхмерные принтеры позволяют изготавливать пробные макеты упаковки, флаконов и бутылок оригинальной формы. Прототипы могут быть цветными, с включением всех элементов дизайна, в т.ч. этикеток, штрих-кодов, фирменных знаков. Готовые модели упаковки могут быть продемонстрированы заказчику перед запуском в массовое производство. Преимущество 3D прототипов налицо: заказчик может подержать упаковку в руках, оценить её фактуру, текстуру, цветовое оформление и некоторые другие характеристики.

Прототипы бутылок, напечатанные 3D принтером

Для изготовления пластиковых упаковок в настоящее время используют следующие 3D принтеры: Dimension uPrint, uPrint+, Elite, SST 1200ES; Fortus 400mc и 900mc. Для изготовления полупрозрачной и детализированной упаковки используются принтеры: Objet 24 и 30; Eden 250, 260V, 350, 500V; Objet 260 Connex, Connex 350 и 500. Для печати цветной упаковки лучше всего подойдут принтеры ZPrinter 250, 450, 650 и 850.

ПО для 3D-моделирования и слайсинга

Прежде чем, брызгая слюной и дергая глазом, стоять над принтером и завороженно смотреть на процесс печати, тебе будет нужно посидеть и внимательно и подробно отрисовать 3D-модель конструкции, фигуры или чего-нибудь еще в редакторе. OpenSCAD, AutoCad, FreeCad, GoogleSketchUp или Blender — все они бесплатные. Главное — это возможность экспорта в форматы для 3D-печати. Сохраняй модели в формате stl — он универсальный, и его поддерживают все слайсеры. Также многие работают с форматом obj.

Можно, конечно, поступить хитрее и поискать готовые модели на специализированных ресурсах, но ведь создавать что-то уникальное гораздо интереснее, не правда ли?

После отрисовки модели необходимо подготовить ее к созданию с помощью программы-слайсера. Это ПО для разложения модели на слои, согласно которым принтер и будет ее печатать. Некоторые производители принтеров предлагают свои слайсеры, но если в твоем их не окажется, то можешь воспользоваться Cura, Slic3r, Repetier или их аналогами.

Этап 1: Создание цифровой модели

Процесс 3D-печати начинается с разработки виртуального образа будущего объекта в 3D-редакторе или CAD-программе («3D Studio Max», «AutoCAD», «Компас», «SolidWorks» и др.). Простую модель может создать любой пользователь, который имеет навыки работы с персональным компьютером и стандартными пакетами прикладных программ. Для создания сложных моделей потребуется пакет профессиональных программ и услуги специалиста в области 3D-моделирования.

Виртуальная модель в среде 3D-редактора

На создание виртуального образа будущего объекта потребуется от нескольких часов до нескольких дней, в зависимости от степени сложности модели. Если модель имеет сложную конструкцию, то лучше доверить её разработку профессионалам.

В отдельных случаях для создания виртуальных образов будущих объектов используются 3D-сканеры. При этом точность объектов снижается, они получаются слегка размытыми. Чтобы получить высокоточный объект, следует создавать его вручную.

Также готовые виртуальные модели можно найти в Интернет, на специализированных сайтах, посвящённых 3D-печати.

Лучшие 3д принтеры

Безусловным лидером рынка производителей оборудования для строительной 3d-печати является Китай. Самая известная компания — шанхайская Shanghai WinSun. Они производят знаменитый принтер WinSun. Его габариты весьма внушительны: длина 150 метров, высота — 6 метров, а ширина — 10. Его мощность позволяет за 4-5 часов изготовить шестиэтажный дом. Материал для печати — смесь цемента, стали и стекла.

Российская компания «Спецавиа» использует аппараты собственной разработки. Самый известный из них — 3d-принтер S-1160. Преимуществом модели является возможность использовать разные строительные смеси: как специальные, так и самые дешёвые. Аппарат используют для печати модулей для будущего здания и малых архитектурных форм (лавочек, скамеек, беседок). Максимальная площадь здания, построенного из модулей, изготовленных на S-1160, составляет 280 квадратных метров.

Среди европейских принтеров можно назвать нидерландский аппарат 3D ProTo R 3Dp от производителя CyBe Additive Industries. Использует специальную бетонную смесь, состав которой производители держат в секрете. Печатает детали толщиной до 3 сантиметров. Также стоит отметить европейские модели Batiprint3D (Франция), BetAbram P1- P3 (Словения).Производители из США уже запатентовали 3d-принтер, способный печатать не сборные модули, а полноценные здания. При этом он не выбрасывают никаких отходов и использует солнечную энергию.

Стоимость 3д принтера для печати домов

В настоящее время 3d-принтер, способный печатать детали для жилых домов, остаётся эксклюзивным и дорогим аппаратом. Его средняя стоимость начинается от 1 миллиона рублей. Но эта самая минимальная цена. Например, за проверенные и хорошо себя зарекомендовавшие себя отечественные аппараты «Спецавиа» придётся заплатить не менее 2 миллионов рублей.


Над развитием технологии строительной печати работают учёные по всему миру

Высокая стоимость обоснована сложностью технологического оборудования и его инновационным характером. Также стоит заметить, что на любую другую строительную технику придётся потратить не меньше, а окупаться она будет значительно дольше. Вернуть все вложения в 3d-строительство получится уже после сдачи 1-2 домов. Этот срок будет равен 3-4 месяцам.

Заключение

Печать домов на 3d-принтере — новое направление строительства, актуальное по всему миру. Средняя цена аппарата — 1,5-2 миллиона рублей. У такого строительства преимущества доминируют над недостатками: высокая скорость, сниженные затраты труда, меньшая стоимость. Разработки в этой области ведут учёные по всему миру, а значит в ближайшие годы можно ожидать новых открытий.

Читайте далее:

Принтер для маникюра

Что можно сделать на 3д-принтере

Оборудование для печати рисунков на футболках

Линия производства сэндвич-панелей

Пленка для иммерсионной печати

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Домашний Фен-Шуй
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: